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Wave Equation for a Magnetic Monopole 
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We show that there is room, in the Dirac equation, for a rnassless monopole. 
The basic idea is that the Dirac equation admits a second electromagnetic minimal 
coupling associated to the chiral gauge eiV5 ~ which is only valid for a massless 
particle, but satisfies all the symmetry laws of a monopole. In the problem of 
the diffusion on a central electric field, we find the Poincar6 integral and the 
Dirac relation eg/hc = n/2. The latter is deduced as a consequence of the fact 
(which is shown in this paper) that eg/c is the projection of the total angular 
momentum on the symmetry axis of the system formed by the monopole and 
the electric charge. Another important property is that a monopole and an 
antimonopole have opposite helicities (as for the neutrino), but do not have 
opposite charges: this precludes a vacuum magnetic polarization which would 
be analogous to the electric one, but allows us to imagine an aether made up of 
monopole-antimonopole pairs. The theory is then generalized on the basis of a 
nonlinear equation which is the most general invariant equation under the chiral 
gauge law. This equation admits solutions corresponding to massive monopoles, 
among which there are bradyons (i.e., ordinary massive particles) and tachyons. 
This equation is shown to be closely related to previous works initiated by 
Hermann Weyt, on Dirac's theory in the framework of general relativity. In 
conclusion, it is suggested that massless rnonopoles are perhaps excited states 
of the neutrino and that they may be produced in some weak interactions. 
Consequences on the solar activity are considered. 

1. I N T R O D U C T I O N  

D u r i n g  the  las t  t en  years ,  m o s t  o f  t he  w o r k s  d e v o t e d  to  D i r a c ' s  

h y p o t h e s i s  o n  the  p o s s i b l e  ex i s t ence  o f  m a g n e t i c  m o n o p o l e s  w e r e  d i r e c t e d  

t o w a r d  t w o  t rends .  ( 1 ) A  h e a v y  m o n o p o l e  in i t i a l ly  s u g g e s t e d  by  ' t  H o o f t  

(G.  ' t  H o o f t ,  1974) a n d  P o l y a k o v  ( P o l y a k o v ,  1974) in the  f r a m e w o r k  o f  

S U ( 2 )  g a u g e  t h e o r i e s  (see  Burzlaff ,  1983; Jaf fe  a n d  T a u b e s ,  1980). (2) T h e  

t h e o r y  o f  t h e  m o t i o n  o f  an  e lec t r ic  c h a r g e  in t he  cen t r a l  f ie ld  o f  a f ixed  

m o n o p o l e  a n d  the  e l i m i n a t i o n  o f  t he  D i r a c  s t r ings  u s i n g  a p r o c e d u r e  i n i t i a t ed  

by  W u  a n d  Y a n g  on  the  bas is  o f  t he  t h e o r y  o f  f i b e r b u n d l e s  ( W u  a n d  Yang ,  

1975; K a z a m a ,  Yang ,  a n d  G o l d h a b e r ,  1977; Y a m a g i s h i ,  1983). 
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The problems considered in the present paper are quite different. Our 
aim is to find a spinorial wave equation for a magnetic monopole in the 
framework of  the Dirac equation. This implies that we find the corresponding 
electromagnetic coupling or, equivalently, to find a new local  gauge law 
different from the common phase invariance. We will show that the Dirac 
equation admits two and only two possible invariant gauges. The first one 
is the phase invariance e i~ which gives the electromagnetic coupling with 
an electric charge. The second one is the chiral transformation e ivy~ only 
valid for a massless particle, which is known in the neutrino theory (Tous- 
chek, 1957; Pauli, 1957), but was previously only used in its global form 
(0 = const.). It will be shown that its extension to a local gauge law provides 
us with a new electromagnetic coupling which corresponds to a massless 
magnetic monopole. 

The fact that the particle so described truly represents a monopole will 
be proved by its motion in a central electric field, which has all the right 
properties, including the Dirac condition (eg/tic)= (n/2)  (Dirac, 1931). 
The latter point and more generally, the problem of the "monopole  har- 
monics" will be reexamined and largely simplified on the basis of group 
theory considerations and of  the analogy between a magnetic monopole 
and a symmetric top. 

An important property of  the equation suggested in this paper is that 
its e ivy~ gauge invariance implies in a simple way the symmetry laws of  the 
"free magnetism" deduced almost one century ago by Pierre Curie from 
the general laws of electricity and magnetism. 

Just as in the neutrino theory and owing to the properties of our 
electromagnetic interaction, the equation splits into two equations describ- 
ing a monopole-ant imonopole pair. But the two particles differ from each 
other by their opposite helicities only, just as a neUtrino-antineutrino pair 
does, whereas their charge g is the same: particles with an opposite g are 
not charge conjugated to the former and could be neither annihilated nor 
created by pairs with them. This property avoids the strong vacuum polariz- 
ation which could be expected from the masslessness of  these monopoles 
and will suggest the possible existence of  an aether made of pairs of 
monopoles with opposite helicities, which should remain "invisible" to our 
ordinary means of observation. 

The last part of  the paper is devoted to a nonlinear generalization of 
the theory based on the same gauge invariance, which allows the introduc- 
tion of  a nonlinear term of  mass. A parallel is made with previous works 
in which analogous nonlinear terms were found on the basis of a quite 
different hypothesis in the framework of general relativity. This leads us to 
the assertion that a magnetic monopole in an electromagnetic field "sees" 
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a twisted space, the connection coefficients of  which are to be identified 
with the pseudo-potential  of  the field. 

2. THE TWO GAUGE INVARIANCES OF THE DIRAC 
EQUATION AND THE CORRESPONDING 
ELECTROMAGNETIC COUPLINGS 

Let us first consider the equation of  a free Dirac particle: 

m o c  
3` .o .0  q, = o (1) 

in the relativistic coordinates x .  = {xk, ict}, where the 3`-matrices are (in 
terms of Pauli matrices Sk): 

3`k=i - sk  0 ' 

(2) 

We will prove that the equation (1) admits two and only two gauge 
transformations of the form: 

0 ~ eW~ (3) 

where F is a constant Hermitian matrix and 0 a constant parameter. 
Introducing (3) in (1) we get: 

iFO . ~ __moo iFO-- y. e 3`.)y. o.~-r--h- e ~ = u  (4) 

But F may be written as: 

16 
r= Z xNrN (5) 

N=I  

with FN = {I, 3% 3`t.3'~, 3'ta3'.3`~1, 75}- Then, from the commutat ion rules 
of 3'., we have for any matrix FN (Pauli, 1936): 

3`.FN3`. = +FN (/x = 1, 2, 3, 4; N = 1, 2 . . . .  ,16) (6) 

where the (+) sign varies according to ~ and N. 
Hence, for any F, we get: 

%~eir~ ~ l ( •  (7) 
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In order that (1) may be invariant under the transformation (3), a 
necessary condition is that %, eir~ does not depend on /x. But, among 
the sixteen matrices FN there are only two that either commute with all the 
% (namely FN = I),  or anticommute (namely FN = Ys). The only possible 
form of F is thus: 

F = XllWX23/5 (8) 

Actually, there are only two distinct cases (apart from a constant factor 
which will be absorbed in 0): (1) F = I, which corresponds to the classical 
phase invariance: 

r ~ e'~ (9) 

(2) F = Ys, which yields the chiral gauge: 

t#-~ e'rs~ 6 (10) 

but while (9) is valid for any value of too, on the contrary (10) is valid only 
for mo= 0. The general case (8) has no special interest because it corresponds 
to the product of (9) and (10). 

Let us now recall, for the sake of completeness, that (9) defines a 
minimal electromagnetic coupling by the covariant derivative: 

e 
V~, =O N - i'-~c A~, (11) 

with the local gauge transformation: 

~b ~ e x p ( i ~ c  4~) tP, A ~ A ~ + O ~ b  (12) 

where the gauge field A~ is a polar vector (the Lorentz potential), q5 a scalar 
function and e an electric charge. 

We shall follow a parallel procedure with the chiral gauge (10), 
introducing the covariant derivative: 

V~, = 0 - g  ysB~, (13) 
hc 

with the new local gauge transformation: 

0-~ exp ( i  g 75qb)~l', B ~ B ~ + i O ~ b  (14) 

Because 75 is a pseudo-scalar operator, the gauge field B~, will be now 
an axial vector, i.e., the dual of an antisymmetric tensor of rank three: 

i 
B~ = C~pr = ~  e~,~or ~~162 (15) . 
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in the same way, ~b will now be a pseudo-scalar function, i.e, the unique 
component of a rank four antisymmetric tensor: 

~b = T1234 (16) 

(for these reasons, there is no factor i before Bg in (13) whereas there is 
one before 0.~ in (14)). 

In the following sections physical arguments will be given for the 
interpretation of Bg as an electromagnetic pseudo-potential in the sense 
given by Cabibbo and Ferrari (Cabibbo and Ferrari, 1962) in the monopole 
theory. Therefore, g will be shown to be a magnetic charge. Let us recall 
thaL in terms of B,, the electromagnetic field is given by: 

F ~  = O ~B. - O.B. = ie,~.,~ OP B ~ = O~ C.~o (17) 

and that Maxwell's equations in the presence of magnetic charges and in 
the absence of electric charges are: 

4~- 
O~F~=O, O~F.~ = c K ~  (18) 

K s is the magnetic current: it is an axial vector. 

3. THE LINEAR EQUATION OF A MASSLESS SPIN 
MONOPOLE (SEE L O C H A K ,  1983): 

Our wave equation will be: 

a g 
T~(  ~ - ~ c  TsB~) qJ =0  (19) 

Its interpretation as the equation of a monopole will be principally 
justified below by its application to the special case of a central electric 
field, but we have previously examined its symmetry properties. 

(1) First of all, (19) is invariant under the gauge transformation (14). 
This entails the conservation of the axial current: 

8~Kg = O, K~ = igt~TgTs~ (20) 

Kg will play the role of a magnetic current. Its variance is in accordance 
with the Curie laws for the monopole symmetries (Curie, 1894) and 
moreover, this expression of K~ was already suggested by Salam (Salam, 
1966). The fact that this choice is imposed by the equation (19) is satisfactory. 

Nevertheless, an intriguing difficulty arises about K.:  it is found to be 
a space-like vctor. This property follows from the Darwin-de Broglie rela- 
tions (Takabayasi, 1957): 

- J f l g  =.E~.E~ = D~+ D,2 2, JgY-,~, =0  (21) 
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where J, ,  Z~, l~ ,  1"~2 are respectively the polar and axial vectors, the invariant 
and the pseudo-invariant defined by the Dirac spinor: 

J~. = i~%.0, Z~. = itff%.ysO , ~ = t~O, ~2 = -it~ys~P (22) 

We see from (21) that J .  is a time-like vector, as is expected for a 
current density, but Z .  (and thus K . )  is space-like, which seems unaccep- 
table. But this objection will be removed in the next section. 

It must be noted that the axial variance of the magnetic current K .  is 
due to the fact that the magnetic charge is actually represented in (14) and 
(19) by a q-number, a pseudo-scalar charge operator: 

G - g~5 (23) 

The pseudo-scalar property of a magnetic charge is well-known (see 
Curie, 1894), but it is very different to endow with such a symmetry the 
physical constant g itself, or to find it as a property of a quantum operator. 
The advantages of our representation will be shown below. 

(2) Taking into account the axial variance of B~, one can verify that 
the equation (19) is 
transformations: 

P, T, C invariant, i.e., invariant under the three 

P: xk-+--xk, X4~X4, Bk~Bk,  B4-+-B4, 

T: Xk-* Xk, X4 ~--X4, Bk ~ -Bk,  B4--~ n4, 

C: g-~g, 0 ~  3,20" = 3,274~ 

0 ~  74~0 

(24) 

if/'9' y l  "~2 y3 ffj 

(25) 

(26) 

Note that the transformation (25) is the so-called "strong" time reversal. 
But the most important feature appears in the formula (26): the charge 
conjugation does not change the sign of  the magnetic charge g. This means 
that a negative energy state is canonically transformed into a positive energy 
state of the same particle and not in a state of a particle with an opposite 
charge as it occurs for electrically charged particles. If  we change g into 
- g  in the equation (19), we obtain a new particle, which is not conjugated 
to the former. Consequently, we cannot create or annihilate pairs of 
monopoles with opposite charges and we do not have to expect any magnetic 
vacuum polarization. This point is very important because if a vacuum 
polarization were possible with massless monopoles, we should have good 
reasons to fear it would be infinite or would at least give rise to enormous 
(and still never observed) physical effects. 

However, we have now to answer the question: In what sense exactly 
can we speak o f"charge  conjugated" monopoles? The answer will be given 
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by the representation of the equation (19) in which the operator G is 
diagonal. 

4. THE TWO-COMPONENT THEORY AND THE ROLE OF 
ISOTROPIC CHIRAL CURRENTS 

The operator G is diagonalized by the operator: 

1 
U = U -1  = ' " ~  (')/4 + ")/5) 

V 2  

because 

(27) 

The transformation ~O ~ Uqs defines the classical spinor representation 
of van der Waerden and we shall write: 

1 
UO = ~  (y4+ ys)0 = ( ~ )  (29) 

where ~ and r/are 2-component spinors which obey the eigenvalue equations: 

Now, introducing (29) in the equation (19), taking (2) into account 
and dropping the relativistic notations, our equation splits into the following 
system (Lochak, 1983): 

( l ~ - s .  V-i-~-g ( W + s  �9 B ) ) , = 0  
c Ot hc 

(31) ( 1 0 + s .  V+ i~cc ( W - s .  B))~7=0 
cot 

where s represents the Pauli matrices and 

iB~ = {B, iW} (32) 

Note that because B, is axial, its space components are imaginary and B 4 

is real: the converse would be true for a polar vector. 
In absence of external potential B~,, the equations (31) reduce to the 

2-component neutrino equations and we see that even in the presence of a 
potential B,, equation (19) describes in fact a couple ofmonopoles represen- 
ted by (31): (a) A left monopole ~ with helicity -�89 corresponding to the 
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eigenvalue +g of the charge operator G; (b) A right monopole r/ with 
helicity +�89 corresponding to the eigenvalue - g  of G. 

The two equations (31)--and thus the two particles--exchange under 
the transformations P, T, C: 

P: t - t ,  x o - x ,  W ~ - W ,  

T: t ~ - t ,  x->x, W~ W, 

C:g~g ,  -is2r162 

B-->B, ~',-~ r/ (33) 

B --> - B ,  ~:~-~ r/ (34) 

(35) 

In these transformations, we must remember that W is a pseudo-scalar 
and B a pseudo-vector. It follows from these transformations, that each 
equation (31) is PT, CP, and CT invariant. 

The transformation (35) may be deduced from (26) and (29). It shows 
that the two monopoles s r and ~ are charge conjugated, but although they 
correspond respectively to the eigenvalues +g and - g  of the charge operator 
G, we see again that the sign of the constant g does not change in the C 
transformation. In fact the essential difference between ~: and r/is the sign 
of the helicity, just like between the neutrino and the anti-neutrino and in 
accordance with the symmetry laws of Curie. 

If we change the sign of g in the system (31), we obtain two different 
equations which are irreducible to the previous system by any unitary 
transformation: 

( 1 ~ 0 - s .  V+ i~c ( W + s .  B ) ) , ' = 0  
cat 

(31a) 

) ( l a + s . v - i g ~ - ( W - s . B )  ~'=0 
\ ca t  hc 

The systems (31) and (31a) describe two different pairs of monopoles. The 
two particles of each pair differ by their helicities and the two pairs by the 
sign of the constant g. 

The equations (31) are invariant under the gauge transformation: 

~-~e~(g/~)6~, ~-~e-~(~/~)6~, W-~ W +  10--$ B--> B -  V~b 
ca t '  

(36) 

Note that the chiral gauge corresponds here to phase transformations 
with opposite signs for s r and 7/, in accordance with the opposite helicities 
of s r and ~7 and with the fact that ~b is a pseudo-scalar. 

In virtue of the gauge law (36) the system (31)--just as (31a)--entails 
the conservation of two chiral currents: 

a(~:+~:) cV(~+sse)=0, a(r/+r/) ~-cV(~+s~7)=0 (37) 
at ot 
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Defining the two currents as: 

X .  = {~+~, -~+s~}, V. = {r/+~7, ~/+s~} (38) 

and making use of the transformation (29), we find the following decomposi- 
tion of the polar and axial vectors (22): 

J~ = X~ + Y., E .  = X .  - Y~ (39) 

This means, in particular, that our magnetic current K .  = gE. ,  given 
by (20), is equal to the difference of the two magnetic currents gX.  and 
gY~. respectively associated to the left and right monopoles. Such a difference 
does not have to be of a definite type and the fact that K .  is space-like is 
not shocking any more: this is the answer to the question raised in Section 
3. Moreover, one can easily prove from (38) that the currents X .  and Y. 
are isotropic: 

= 0, 0 (40)  

which is in accordance with the fact that our monopoles are massless. 
Finally, we can verify on (37) and (38) that the parity transformation 

involves an exchange between X~, and YF,: 

x ~ - x ~  X ~ ,  Y~ (41) 

which justifies their denomination as chiral currents. 

5. THE M O N O P O L E  IN A CENTRAL ELECTRIC FIELD. THE 
PROBLEM OF "MONOPOLE HARMONICS"  

In order to solve the central field problem, we first have to find the 
expressions of W and B for a central electric field. From (17) and (32) we 
have: 

r 
rot B = E = e--r3 , W = 0 (42) 

As we have said in Section 1, we will choose neither the representation 
of Wu and Yang in terms of a connection on a fiber bundle, nor exactly 
the Dirac solution: 

B , =  e - Y  , _ e  x 
r r + z '  B y - r r + z ,  B'z = 0, (r=x/x2+y2+z2) (43) 

We choose instead: 

Bx e yz e - x z  
=r x2 + y2, By r x2 + y2, B= = 0 (44 )  
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which differs from the former by a simple choice of gauge: 

B - B' = V Arctg --y (45) 
x 

But the true difference is that (44) is an axial vector, as B must be, while 
the solution (43) has no definite parity. Some simplifications will occur from 
this choice in the computations. 

In polar coordinates (x = r sin 0 cos ~,  y = r sin 0 sin @, z = cos 0), 
we have: 

e sin qb e cos qb 
Bx r t g0  ' By r t g0  ' Bz=O (46) 

Introducing (44) in the 2-component equations (31), one can verify 
that the latter admit respectively the following left and right Poincar6 
integrals (Poincar6, 1896) of motion, corresponding to the monopole and 
to the antimonopole: 

Je = h [ r X ( - i V  + D ~ )  + D ~ + ~ ]  (47) 

Jn = h [ r X ( - i V  - D95) - D~+~s] (48) 

with the notations: 

eg 
D = ~c '  B = e ~ ,  ~ = rr (49) 

We know that the Dirac number D will play a fundamental role. J~ 
and J~ differ only by the sign of D: we can thus restrict our study to the 
first equation (31) and consider only Jo  dropping the subscript ~. Let us 
recall that J is a total angular momentum: h r x ( - i V + D ~ )  is the orbital 
part, hD~ corresponds to the external field (Thomson, 1904; Goldhaber,  
1965), h /2  s is the spin. The components of J obey the relations: 

[J2, -/3] = ihJ1, [./3, Ja] = ihJ2, [./1, J2] = ihJ3 (50) 

The angular part of  the stationary solutions of the first equation (31) 
(they will be the "monopole  harmonics") are the eigenstates of j2 and we 
can choose those which are also eigenstates of  J3. We will give for this 
problem a procedure which considerably simplifies the calculations. 

Let us first write J in the form: 

J =  h(A+~s),  A = r x ( - i V + D ~ ) + D ~  (51) 

The components of  A satisfy the relations: 

[A2, A3] = iA1, [A3, A1] = iA2, [Aa, A2] = iA3 (52) 
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and they have the following expressions in terms of polar angles: 

( 0 0 D )  
A + = A~ + iA2 = e ~* i cot 0 - - + - - +  

0q~ 00 sin 0 

( 00o) 
A- = A1 - iA2 = e -i~ i cot 0 - - - - - +  (53) 

0~ 00 sin 0 

0 
A 3 = - i~--~  

Notice that, owing to the choice of the solutions (44) for B we have 
no additional term in A3, as occurs with the Dirac solution (43) (Wu and 
Yang, 1975, 1976). To solve our problem we must find the eigenstates 
Z(O, fb) of  A 2 and A3: 

A2Z =j( j+ 1) / ,  A 3 / =  m l  (54) 

with 

j=�89 1 , 3 , 2 , . . . ,  m = - j , - j + l , . . . , j - l , j  (55) 

These eigenvalues are known a priori as a consequence of the commuta- 
tion relations (52). But instead of computing Z(O, ~), we shall introduce 
a third angle X (the meaning of which will soon appear) and we shall 
consider the product: 

9(0, d~, X) = ei~ O, d~) (56) 

The functions 9(0 ,  qb, X) will be eigenstates of new operators R 2 and 
R3 with the same eigenvalues as Z: 

R2~ = j ( j +  1)9, R3~ = m~ (57) 

The new set of operators R1, R2, R3 is immediately derived from (53) 

R +=Rl+iR2=e ~* icotO0 + 

R-  = R 1 = iR2 = e -i* i cot 0 . . . .  (58) 
0q~ 00 sin 0 

0 
R 3 = - i - -  

0qb 

But these operators are well-known: they are the infinitesimal operators 
of the rotation group in terms of the Euler angles: 0 is the angle of nutation, 
qb is the precession, and the angle X we have just introduced is the proper 
rotation angle. The operators R k are  expressed in the fixed referential: the 
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more common expressions in the moving referential will be denoted Qk and 
we have (Lochak, 1959; Gelfand, 1956, 1963): 

Qk(0, qb, X) = Rg('0, 7r -X, ~" - (I)) (59) 

Is it in any way surprising to come across these operators Rg (or Qk)? 
Certainly not, because the dynamical system constituted by a monopole in 
a central electric field has the spherical symmetry and a general theorem 
(Gelfand, 1956, 1963) claims that when such a system is described by a 
linear differential equation (as it is in our case) a general continuous solution 
may be expanded in a series of generalized spherical functions, i.e., the matrix 
elements of the linear representations of the rotation group. They are 
precisely the solutions of the problem (57). 

This is why the orbital angular momentum A given by (53) could not 
be anything else but the infinitesimal rotation operator, just like for a 
symmetric top (Lochak, 1959): the only relation between the motion of a 
top around a fixed point and the motion of a monopole around a fixed 
electric charge (or conversely the motion of an electric charge around a 
fixed massive monopole) is the invariance under the rotation group. This 
explains why the angular functions in both cases are identical. The fact 
itself has been known for a long time (Tamm, 1931; Fierz, 1944), but this 
simple explanation does not seem to have been given before. 

Under the only condition of continuity on the rotation group, the 
solution of the eigenstates problem (57) is: 

m',m @j (0, ~, X) = e'(m~+"'X)dT"m(O) (60) 

dT',m(O) 

= N ( 1  - u)  ( - L ]  
\ du] 

[(1 -- u)J-'~'(1 + u)J + ' '  ] 

(61) 

(62) 

(63) 

u =cos  0, N-( -1)J -mim-m' ( j  ( j + m ) !  )1/2 
2 j ( -m) ! ( j -m ' ) ! ( j+m' ) !  

j =1, 1,-~, 2 , . . . ,  etc . . . . .  m , m ' = - j , - j + l , . . . , j - l , j  

These formulae are given in all the textbooks on group theory. The 
constant N in ~jm'm is SO defined that the rows (and the columns) of the 
unitary (2j + 1)-matrix of the representation @j are normed to unity. Hence, 
if we go back to the normalized angular quantum states Z(O, alp) (56), we 
find the "monopole harmonics": 

m',m Zj  (0, qb) -- ~ ? ' m (  0, alp, 0) (64) 
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The angle X of proper rotation disappears from the eigenstate of the 
monopole because the latter is punctual in this theory: the existence of a 
projection hm' # 0 of the orbital angular momentum on the symmetry axis 
of the system is only due to the chiral properties of the magnetic charge 
and to the angular momentum thus induced on the electromagnetic field, 
but there is no spatial extension of the monopole, contrary to the case of 
a symmetric top. 

However, a crucial point is, precisely, the expression hm' of tbis 
projection, because we get from (56) and (60): 

D = m '  (65) 

Then, the Dirac number is the proper rotation quantum number. Its values 
are given by (63) and, from (49), we get the famous Dirac law (Dirac, 1931): 

eg  n 
hc 2 (n:integer) (66) 

It must be emphasized that this relation is deduced from the sole 
hypothesis of the continuity of the matrix elements ~ " "  (and therefore of 
the eigenstates Z~ 'm) on the rotation group: no other condition is necessary 
to solve the problem (57) (Lochak, 1959, 1984). 

It is perhaps not useless to underline that the functions (60) and (61) 
are really continuous for all the values of 0, m, and m' and that, despite 
their appearance, they do not have any "mark" of the discontinuous string 
of the pseudo potential B (46). This continuity may be proved directly by 
a property of the Jacobi polynomials, but actually it lies in the very definition 

m',rn of the "generalized spherical functions" ~j . 
Finally, by the Clebsch-Gordan procedure, we find the harmonics with 

spin: 

/(J'i-mX~ 1/2 1) 

\ ,, 27-:-i : / 

~(j-re+l)"' ] 
_ I T-: z? ,m-' 

~-~n'.rn(_)__ (J+m~ 1/2 

further denoted f~f and f~j- by abbreviation and which correspond respec- 
tively to the eigenvalues k =j+�89 and k = j - � 8 9  of j2. With k =j - �89  we have 

(67) 
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for instance: 

j2flf_, = h2k(k+ 1)fir-l, J21~j-= ti2k(k+ 1)1~- (68) 

In order to achieve the integration it will be useful to make the operator 
s .  P act on the spinors ~ ; .  The following formulae are deduced from the 
recurrence relations between the generalized spherical functions (Gelfand, 
1963): 

^ + Or,-,+ + " s ' r f l j _ l = c o s  st j-1 sm0 'O i 
(69) 

0 ' n  + s �9 r o y  = sin *~j-1 - cos 0'Ilj: 

m '  D 
cos 0 ' = - - =  (70) 

J J 

The angle 0' has a double physical meaning at the geometrical optics 
approximation: 

(1) hj is the total orbital momentum (without spin) and hD the angular 
momentum of the external field. Therefore, 0' is the angle between these 
to momenta: it is thus the vertex half-angle of the Poineard cone (Poincar6, 
1896; Goldhaber, 1965), the geodesics of which are the trajectories of a 
monopole in an electric central field (or of an electric charge around a fixed 
monopole). 

(2) But on the other hand, hm' is the projection of the total orbital 
momentum on the symmetry axis of the system: hence, 0' may also be 
defined as the vertex, half-angle of the cone enveloped by the precession of the 
symmetry axis around the total angular momentum. This new definition of 
the Poincar6 cone exactly coincides with the definition of the Poinsot cone 
of a symmetric top. The identity between these two cones (of Poincar6 and 
Poinsot) is another consequence of the identity of both problems (the 
monopole and the top) with regard to the invariance under the rotation 
group. Note that the same angle 0' appears in the geometrical optics 
approximation of a quantum top (Lochak, 1959). 

6. THE RADIAL FUNCTIONS OF THE MONOPOLE 

Introducing (49) and (61) in the ~=-equation (31), we find: 

i0~ 
- - - = s .  ( i V -  m ' ~ ) ~ :  ( 7 1 )  
cot 

where W = 0  and ~ = 1/e B is given by (44) or (46). A solution ~: with a 
given total angular momentum k =j- �89 will take the form: 

- i o ,  t + + + - r - = e (F~_l(r)I~j_, F~ ()12~) (72) 
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where ~= are the angular spinors (67) and F~:(r) are radial functions we 
now have to compute. To this end, we shall apply a classical integration 
method of the hydrogen atom in Dirac's theory. Introducing (72) in (71) 
and multiplying by s �9 ~ we get: 

O) A / r +  I x +  2t - - s .  r t r j - l ~ j - 1  F T f ~ i ) = s  �9 ~s. (iV-m'~)(F)_I~+x+Fj-~7) (73) 
C 

Using (44), (51) and the classical algebraic relation: 

s .  Als" A2=Al �9 A2+ i(Ai xA2) �9 s 

the equation (73) takes the form: 

dF+__, + d F ;  _ 1 A 
�9 ~'~j--1 + T [ ~ -  -- " s(F;+-laJ+-I  + f j -~ '~ f )  dr r 

(74) 

- + z  c 

We know that f~• are eigenvectors of j2 and A 2 with eigenvalues 
h2k(k+ 1) and h2j( j+ 1); we have then (for k = j - �89  

A- s ~ - i  = (j - 1)f/f-l, A .  sf~j- = "-( j+ 1)f~- (76) 

It is easy to eliminate f ~  from (75), multiplying on the left successively 
by ~'~;-- 1 a n d  by f~- and integrating on the angles. Making use of (69), we find: 

/ ) r - r  s3 \ r c e-'S~(~ is2(~ P---O (77) 

f ( r )  = ( f f _ l  (r)~ (78) 
\ F; (r)/ 

Introducing new functions Gf_l(r) and G~(r) such that: 

G § (~-~'~qG G=( '-"~ (79) 

the equation (77) becomes: 

~ - - ; s3+i - - s  I a = 0  (80)  
c 

where l---0 has the value: 

l = j  sin 0'-- ( j2_ m,2)u2 (81) 

I is the projection of the total orbital angular momentum (monopole + 
field) on the symmetry plane orthogonal to the axis of the Poincar6 cone. 
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Differentiating (80), we get two Bessel equations (Ince, 1956) for the 
components of G: 

dr t- -~ r2 dr t- --~ r2 G f = O  

(82) 

Taking into account (80) and the recurrence formula: 

zJ'~(z) + a L ( z )  - ZA_l(Z) 

we find the solution: 

( ,,,_1,2 
(83) 

Inserting this result in (79) and then in (72), we obtain the ( functions. 
We would get, by a similar procedure, the spinor rb 

In conclusion of the last two sections, we can say that: (a) Our equations 
(31) give the correct expressions (47) and (48) for the angular momentum 
of a monopole in a coulombian field. (b) The Dirac relation (66) is deduced 
in a simple way from general conditions of rotation invariance and continuity 
of the wave functions. (c) The geometrical analogy with the classical 
corresponding problem is made evident in the case of the Coulomb interac- 
tion. (d) The radial functions (84) are exactly the same as the corresponding 
ones for an electrically charged massless fermion in the field of an infinitely 
massive monopole:  see for example formulae (23) in Kazama (Kazama, 
1977) with M = 0 and note that equation (22) of the same reference (for 
M = 0) corresponds exactly to the above equation (80) (our 1 is denoted/x  
in Kazama (Kazama, 1977)). 

We shall not discuss further the properties of these radial functions 
and, especially, we shall not enter into the subtleties of the lowest possible 
level of  the angular momentum thoroughly examined in several papers 
(Kazama, 1977; Yamagishi, 1983). 

We shall try to answer another question. Until now, we could ask: 
"Does the system (31) actually represent monopoles?":  the results of  the 
last two sections give a positive answer. But now, from the close analogy 
between our results and the classical ones, arises a new question: "What  is 
new in this theory? What is the difference between this theory and the one 
which would be more directly obtained if we had tried to describe a spin 
1 monopole by simply introducing a pseudo-scalar constant of  charge g in 
the Dirac equation?". 

(84) 
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7. MUST THE MAGNETIC CHARGE BE A PSEUDO-SCALAR 
c-NUMBER g OR A PSEUDO-SCALAR q-NUMBER g~/s 
(WITH SCALAR g)? 

In order to make the comparison easier, we shall consider the case of 
a massless monopole, but instead of the equation (19) we write: 

a g 
% , (  ~ - ~ c  B~.) ~O =0  (85) 

We have introduced the same quasi-potential B~ as in (19) (there is 
no factor i as there would be before A.  in the usual Dirac equation, because 
B. is axial). The charge operator is no more G = gY5, like in (19), but: 

G'= gI (86) 

so that (85) is no longer invariant under the chiral gauge transformation 
(14), but only under the ordinary phase translation: 

~b--> e ~(g/~c)r B~ ~ Bu + ia.@ (87) 

Hence, the associated conservative current is not the axial vector E~. 
but the usual polar one J~. and instead of (20) we have: 

K ;  = gJ~. = ig~y,,@ (88) 

Since J~, is polar and B.  axial, the equation (85) will be P and T 
invariant only if we admit that the c-number g itself is a pseudo-scalar. 

To compare this new theory with our previous one, the best thing to 
do is to write the 2-component representation: 

- - - s . V  ( W + s - B )  ~:=0 
at /~c 

(89) 

(~t +s" v-i--g (W-S'~c B))n=0 
The difference with (31) seems to be very small: only the sign before 

i in the second equation. But the consequences are very important: whereas 
the r and ~7 equations exchange between themselves in (89)--just like in 
(31)--under the P and T transformations (33) and (34) (because g is 
supposed to be a pseudo-scalar), on the contrary the charge conjugation is 
no more (35) but: 

C: g ->-g ,  --is2~*-'->'O, is271*-> ~ (90) 

The monopole and the anti-monopole are not only left and right: they 
have moreover opposite charges. Monopoles with opposite charges can now 
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be created or annihilated by pairs, involving (in the case of  a zero, or weak 
mass) a strong vacuum polarization which has never been observed. 

However,  with the phase transformation (87) instead of  the chiral gauge 
transformation (21), we are no more confined to the massless case, so that 
we could introduce in the equation (85) a mass term, that would give cross 
terms in (89), which could weaken the vacuum polarization, if the monopole  
is taken sufficiently heavy. But the principal objection against such a theory 
does not lie here: it lies in the fact that the particle described by (85) is not 
a true monopole ,  but rather an electrically charged particle which is as to 
say "disguised" into a monopole.  

Actually we can introduce a dimensionless pseudo-scalar S, such that 
S 2= 1 and define the following quantities: 

e =  Sg, A~  = iSB~, J~, = SK'~  (91) 

Introducing (91) in (85), we cannot distinguish this equation from the 
equation of  an electrically charged massless fermion. And, adding a term 
of  mass, we find the usual Dirac equation! We are faced with a particular 
case of  a classical objection against the monopole  theory (Cabrera and 
Trower, 1983; Jackson, 1975; Harrison et al, 1963). It was argued that if 
we generalize Maxwell 's  equations by adding densities of  magnetic charge 
and current: 

1 0E 1 OH 
r o t H  . . . .  4 7 r j  - r o t E  . . . .  4~-K 

c Ot c c Ot 
(92) 

div E = 47rp, div H = 47r/z 

the system thus obtained is invariant under  the following transformation: 

E = E' cos 3, + H '  sin y, H = - E '  sin 3' + H '  cos 3/ 

p = p '  cos y + / x '  sin y, /z = - p '  sin 3 '+/z '  cos 3' (93) 

J = J '  cos 3' + K' sin % K = - J '  sin 3' + K' cos 3' 

where 3' is an arbitrary constant pseudo-scalar angle. Thus, we can (so goes 
the argument) eliminate the magnetic terms by a convenient choice of  3' 
and go back to the usual Maxwell equations: consequently the problem of 
monopole  would be a simple question of  terminology, not a physical 
problem. Actually, we shall see that this reasoning is false in the case of  
our theory but it is true for the one which is examined in this section: the 
t ransformation (91) simply corresponds to introducing in (93) a value of  3+ 
such that 

sin 3' = S, cos 3' = 0 (94) 

from which follows the transformation of a purely magnetic particle in a 
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purely electric one. In this sense, we can assert that the equation (85) does 
not represent a " t rue" monopole but rather a "disguised" electric charge 
and reject, for this reason, the all too simple idea of representing a magnetic 
charge by a pseudo-scalar c-number. 

Our theory, based on the charged operator g3'5, i.e., on a q-number, is 
completely different, because there, it is impossible to reduce magnetism 
to electricity using a transformation like (91) or (93). To prove this assertion, 
it is enough to observe that current densities of electricity (J , )  and magnetism 
(K~,)  c a n n o t  be propor t iona l ,  for the elementary reason that J~ is time-like 
and K~, space-like. In another way, we could ask the question: is it possible 
to find a canonical transformation of (19), i.e., a unitary matrix U, such 
that J ,  would be transformed in X, ? It would be so only if: 

U3"5 U + = qI, ( U + U = I )  (95) 

but this is impossible because: 

tr 3'5 = 0 (96) 

(remember that (96) is an invariant property (Pauli, 1936) implied by the 
anticommutation of Dirac's matrices). 

The electromagnetic coupling we have introduced in the equation (19) 
is thus irreducible to the coupling appearing in the usual Dirac equation 
of the electron and we may assert that it actually describes an " independent"  
particle, different from the electron. 

The fact that there are two and anly two electromagnetic gauges in the 
Dirac equation and that one of them corresponds to an electric charge and 
the other one to a magnetic monopole is striking. If  we think of the heuristic 
power of the Dirac equation, it is difficult not to believe in the existence 
of this monopole. 

The equation (19) is the only possible one in the framework of the 
Dirac formalism, but only in the linear case. We will now examine nonlinear 
possibilities, but we need previously some properties of the chiral gauge. 

8. T R A N S F O R M A T I O N  OF THE DIRAC TENSORS U N D E R  THE 
CHIRAL GAUGE 

For the sake of the simplification of some formulae, we shall write (10) 
in the form: 

q"= e~5(~ (97) 

Introducing this formula in the 16 expressions: 

n l  = 4;q,, = i63' q,, : iq;3' 3'sq,, = q73't 3'  q,, 

f l2  : - i~3' 5~0 (98) 
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and denoting with primes the same quantities transformed by (97), we find: 

! m J ~ ,  ! __ 
J r  -- ~g -- E~ (99) 

( f ~ ]  = (cos  0 - s in  ~) (12~) (100) 
f ~ /  \s in  0 C O S  ~'~2 

M ~ ]  \ s in  0 cos M.~ 
f 

hT/~,~ denoting the dual tensor of M,~. In fact, (101) is also a consequence 
of (100) and of the Yvon-Kofinck formula (Takabayasi, 1957; Yvon, 1940): 

(~12 + 12~)M~.~ = 121(J~,s - J~s - 122(1,s - J~s  (102) 

The most interesting formula is (i00) which says that in the "chiral 
plane" the "vector" (121,122) undergoes a rotation of  an angle 0. 

It could seem, looking at the relations (99), (100), and (101) that we 
can define a relatively great number of  quantities, invariant under the 
Lorentz and chiral transformations. Actually, taking into account the fact 
that the tensor quantities are connected between them through (21) and 
(102), only one independent invariant remains, the length of  the vector 
(f~l, f~2) in the chiral plane: 

P = (f~2+f~)l/2 (103) 

It is convenient to introduce a pseudo-scalar angle A in the chiral plane, 
such that: 

121 = P cos A, 1"~2 = p sin A (104) 

Then, the transformations (97) and (100) both reduce to: 

A ' = A + O  (105) 

It is worth mentioning that the angle A plays an important but still 
mysterious--role in the Dirac equation (Takabayasi, 1957; Jakobi and 
Lochak, 1956a, 1956b; Lochak, 1957; Halbwacks, 1960). If  a quantity is a 
chiral invariant, it does not depend on A. If  it is, in addition, Lorentz 
invariant, it depends only on p. 

Then, we shall consider the Lagrangian density: 

g d~%:ysB.~p-+ 1 ~ ( p 2 ) c  (106) 
L =  _%,[O~]qJ-hc~tb - ~  4 h 

where p is the quantity (103) and ~(p2)  is an arbitrary real scalar function 
which has the dimension of  a mass. 
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9. A NONLINEAR EQUATION FOR A SPIN ~ MONOPOLE 

From the Lagrangian (106), we derive the field equation (Lochak, 1983): 

1 m(p2)c(121 - if~2ys)) qJ (107) 

where m(p 2) is the derivative of the function ~(p2) introduced in the 
lagrangian. 

From its very definition, the equation (107) is invariant under the chiral 
gauge transformation (14) and the magnetic current K~ is still conserved 
as it was for the linear equation (19). Likewise, the equation is P-invariant: 
one can prove it easily with the transformation (24). But on the contrary, 
one can see, using (25) and (26), that the equation (107) is neither T nor 
C-invariant. It is only CT invariant, i.e., invariant by the transformation: 

CT: .)(.4--> -x4,  Xk -> Xk, B4--> B4, Bk -> --Bk, 
(108) 

( C T  is the so-called "weak" time reversal). 
Of course, just like in the linear case, the sign o f g  remains unchanged 

under the C T  transformation (108). 
Now, introducing the change of variables (29) we get the two com- 

ponent spinor equations: 

1 O( i g  i m(l~+rll)c - - - - s .  v~:- (W+s .  B)~+ (~+~:)n =0 
c Ot hc h 

(109) 
1 0__.~_~_ s .  Vr/+ i ---~g ( W - s .  B)r/+ i m(l(+rll)c (~+~7)~ = 0 
c Ot hc h 

Making use of (33), (34), (35), and (36) we can verify once more that 
the system is P-invariant and gauge invariant, but not T and C invariant. 
The C T  invariance is easily verified and the corresponding transformation 
is: 

t ->-t ,  x->x, W, B-> -B,  g-> g, -is2~*-> T1, is2~* -> ~ 

(110) 

The most important property which appears immediately on the system 
(109) is that the left and right monopoles are no longer independent, but 
are coupled by the non!inear term. Nevertheless, this nonlinear coupling is 
not so strong as it seems to be. One can verify indeed that not only the 
global magnetic current i~y~ysqt is conserved (which is a consequence of 
the chiral gauge conservation) but moreover the relations (37) still holds, 
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which means that both chiral isotropic currents are separately conserved. 
Besides, it turns out that not all pairs of  (~:,~7) solutions are nonlinearly 
coupled and the exceptions are interesting. 

The equations (107) or (109) show that the nonlinear coupling can 
disappear when both invariants 1~1 and 122 cancel simultaneously, which 
simply means, on (109), that: 

~:+~/--0 (111) 

This happens in only three cases; 

~:=0, r /=0 ,  ~:=f(x,  t)s2~7* (112) 

The first two cases correspond to a monopole alone, with a definite 
helicity which obeys one of  the linear equations (31). But the most interesting 
case in (112) is the third one. In principle the factor f (x ,  t) is an arbitrary 
scalar function. But given that the equations for ~ and ~7 are now separate 
and linear, we may postulate that ~ and r/ are both (and separately) 
normalized. Hence: 

f (x ,  t) = e ir~x'O (113) 

So, the factor f is no more than a phase factor which may be absorbed 
in the gauge of the external field and we can write, without loss of  generality: 

~= is2~7" (114) 

But this is the charge conjugation relation (35). Therefore, the third 
case of  cancellation of the nonlinear term in the equation (109) occurs for 
a pair monopole-ant imonopole (i.e., monopoles with equal charges but 
opposite helicities). 

Now, if we introduce (114) in (38), we find that the chiral currents are 
equal: 

X , = Y ~  (115) 

From this equality and (39), it follows that: 

J~ = 2 X , ,  Z ,  = 0  (116) 

which means that the electric current is isotropic, while the magnetic current 
disappears. Therefore, there will be no more observable current because our 
monopole is not supposed to be electrically charged and it seems that such 
a pair would be very difficult to observe. Therefore, it seems possible that 
we could be immersed in an aether made of such pairs of  monopoles 
without having ever observed it. Such an aether would be, of course, quite 
different from a vacuum constituted by pairs with opposite charges. But 
even if the plausibility of  this monopo~e aether were theoretically confirmed, 
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the question would remain: how could we break its homogeneity and observe 
it? 

10. PLANE WAVES AND DISPERSION RELATIONS 

One can see that in (109), the phases of ~= and 71 are independent. We 
can thus consider the following plane waves (where a and b are constant 
spinors): 

= a e  i(~ 17 = be  i(~~ (117) 

Introducing these expressions in (109) without external field, we find: 

a-,- 

m + b"e o.b,a=O 
(118) 

If  we multiply the first equation by (O)'/c-s. k'), introducing the 
relations: 

k):.+, 
! 

tOO) 
f~ = - ~ - - k  �9 k', K = I  (o) 'k-  o)k')+ ik •  ' 

C 

(119) 

we find: 

m + 

(120) 

Then, using the second equation (118), it follows: 

_M2c2~ 
f ~ + s ' K  h2 ] a = 0  

with 

(121) 

M -= m ( l a §  • la+bl (122) 

In order to have nontrivial solutions in the equation (121), we must 
impose: 

M 2 c 2 \  
det (f~ + s �9 K----h-~)  = 0 (123) 
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This is the dispersion relation, but it needs to be put in a more explicit 
form. Let us denote by K1, K2, K3 the components  of  K and (123) becomes: 

(f~ M2c2 ) 
- - - 7  + K3 K1 -- iK2 = 

M2c 2 det K1 + iK2 ~ •2 K3 

Hence we have: 

0 (124) 

M2c2\ 2 
O - - - ~ )  - K 2 = 0  (125) 

But taking account of  (119), we have: 

= ~ ( w ' k -  ~ok') 2 -  (k • k') 2 (126) K 2 

which proves that K 2 is real, and it is easy to find that: 

/ w  ,2 \ 
~-~2-g2=(~2-k2)~7-k'2 ) (127) 

Consequently,  the dispersion relation (125) takes the explicit form: 

' [o)o)'_k M2c 2 M4c 4 

Two particular cases are especially interesting: 
(1) o) = w', k = k': both monopoles  ~ and r /have  the samephase. The 

dispersion relation immediately reduces to: 

2 M 2 c  2 

c-y = k2+ h~-y- (129) 

This is the ordinary dispersion relation of  a massive particle in quantum 
mechanics with a proper mass M. But in our case, this proper  mass depends 
in general on the amplitudes a and b through the relation (122), except in 
the case when the function m in the equations (109) is: 

mo (too = Const) (130) m(IC~[)=]C~I 
Fox this particular choice of  m, M 2 reduces to the constant m~ in the 

relation (129); it is worth noting that the equations (119) are then 
homogeneous in s ~ and ~7, which means that s c and ~7 (respective, a and b) 
are only defined up to a normalization constant. 
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(2) co =-co ' ,  k = - k ' :  the monopoles have opposite phases. Now the 
dispersion relation reduces to: 

2 M 2 c  2 co .=_: k2 - 
c2 h2 (131) 

This case corresponds to a supraluminal particle: a tachyon. In the 
terminology adopted in tachyon theory (Recami, 1979) we can say that the 
dispersion relation (129) corresponds to a bradyon and that the bradyon 
case and the tachyon case are linked by the limit case of a luxon which 
corresponds to M = 0, i.e., 

~+rl = a + b = 0 (132) 

11. THE RELATIONS BETWEEN A CHIRAL GAUGE AND A 
TWISTED SPACE 

In the absence of the special electromagnetic coupling which charac- 
terizes the magnetic monopole, the nonlinear equation (107) was already 
known under different forms. Let us particularize the Lagrangian (106), 
putting: 

B~ = 0, 4 h 2 (133) 

where A is a constant. This nonlinear term may be written in two other 
forms using (21), so that we get for (107), omitting the electromagnetic 
field, the following three equivalent equations: 

7,. a~tP + A [ t ~ O - (  (bTsO )3/s]O =0 (134) 

% 0~0 + A (~3'~0) V~6 = 0 (135) 

7.  0~0 + h (6753,.0) ~/5~/.~b = 0 (136) 

The equations (135) and (136) were studied by several authors (Finkel- 
stein, 1951, 1956; Rafiada, 1978), with an additional linear term of mass; 
the restriction of (135) to a 1 + 1 dimension space is the well-known Thirring 
(Thirring, 1958) model (Rahada, 1984). The equation (136), without linear 
term, was considered by Heisenberg and coworkers as a basis of a theory 
of elementary particles (Heisenberg, 1958;'Heisenberg et al., 1959). It is 
interesting to note that Heisenberg had previously considered the equation 
(Heisenberg, 1954; Heisenberg et al., 1955): 

~& 0~0 + A(~+0)0 =0  (137) 

which was studied more recently by Soler, Rafiada, and Alvarez (Soler, 



1 0 4 4  Lochak 

1970; Rafiada and Soler, 1972; Alvarez and Soler, 1983) (with a linear 
term). But the great difference is that (137) is not invariant under the chiral 
gauge (10). We must recall that if one adds a linear term of mass to the 
equations (134), (135), or (136) they lose the chiral invariance and are no 
longer compatible with the monopole electromagnetic coupling (107). 

The most interesting works, from the point of view of  the present paper 
are the works of  Weyl (Weyl, 1950), Kibble (Kibble, 1961), and Rodichev 
(Rodichev, 1961), who found the equation (136) from a geometric point of 
view. 

The problem of Weyl was to compare the Dirac theory written in the 
ordinary metric relativistic theory (in which the connection coefficients F ~  
are expressed in terms of  g~,,) and in the "mixed" theory in which the F x p~z, 

and the g , ,  are considered as independent quantities: he found that Dirac's 
equation retains its form in both frameworks only if  one adds a nonlinear 
term which tends to (~y~y5 ~)Y~YsO for a vanishing gravitational field. This 
result was later confirmed by Kibble, whose problem was to deduce the 
Einstein gravitational theory from the invariance under the inhomogeneous 
Lorentz group. It must be noted that, in a 5-dimensional theory, Rafiada 
and Soler (Rafiada and Soler, 1972) did not found the Weyl term but a 
term which looks like the one of (137) (expressed in a 5-dimensional space). 

The interpretation of  (136) by Rodichev is the following. He considers 
a non symmetric affine connection, i.e., 

sE% =rL-rL (138) 
but with rectilinear geodesics. It is known that, contrary to the connection 

(when it exists) is a tensor and F ~  itself its antisymmetric part SE,~ 1 
A represents a torsion of  the space. This signifies that, when SE~ ? ~ 0 the 

image of a closed curve of  an affine space in such a twisted space is always 
broken (i.e., a nonclosed curve) and that, if we try to squeeze the initial 
closed curve to infinitesimal dimensions, the magnitude of the gap between 
the ends of  the image remains of the second-order with regard to the linear 
dimensions of the initial curve. In other words, the image of a loop is an 
arc of  helicoide with a " thread"  which remains of the same order as the 
area of the loop. Here lies the difference with a symmetric connection space, 
where the magnitude of  a similar gap (or thread) would be of  a higher 
infinitesimal order. These characteristics of  a twisted space are in close 
analogy with those of  a spinfluid: in the same manner, a spin density is not 
to be confused with a proper  angular momentum due to the curl of  an 
ordinary fluid motion, because the spin of a fluid droplet dv is of the same 
order as dv itself, while the proper  angular momentum of the same droplet 
(which is the only one which exists'in an ordinary fluid) is of the fifth-order 
of magnitude with respect to the linear dimensions of  the droplet 
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(Halbwachs, 1960). The analogy between twisted spaces and spin fluids 
were guessed a long time ago, but now it has become more than a simple 
analogy, since the recent works of Ray and Smalley (Ray and Smalley, 
1982, 1983; Smalley and Ray, 1984) who demonstrated it as a consequence 
of their geometrization of spin. 

Let us go back to the idea of Rodichev (with some slight modifications). 
In such a fiat twisted space, in cartesian coordinates, F ~  may be restricted 
to a completely antisymmetric tensor: 

FA~ = ~b[~] (138a) 

and the same holds for Stx~,~] which is twice Fa.~. Then, Rodichev introduces 
the following covariant derivative for the Dirac spinor: 

i 
V ~ = 0 ~  --~ ~o~A "y~3,x qs (139) 

and the Lagrangian density: 

L = �89 q~%. V.~O - (V.q~) y.~0} (140) 

Already at this stage, we can make the following remark. L m~y be 
written, owing to (139), in the form: 

- 4~.~ ~Tg%3'AO } (141) 
i 

Let us introduce the dual d#. of ~b~.~x, which is an axial vector: 

i 
~b  = ~. e~a~b.x~ (142) 

Hence, L becomes: 

L = �89 ~ T .  a.O - ( a . ~ )  T.~b - �89 (143)  

and the corresponding field equation is: 

y~(O~ -�89 ~ = 0 (144) 

This is exactly the equation (19) with: 

2g 
s  = ~c B.  (145) 

We may interpret this identification by the assertion that: when a 
monopole is plunged in an external electromagnetic field, the surrounding 
space becomes twisted for it, with an antisymmetric connection which is 
equal (apart from a constant factor) to the dual of the axial potential of 
the field. 
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But this was not the reasoning of  Rodichev, whose work was not 
concerned with the monopole problem. He considered an Einstein vari- 
ational principle with the following action integral: 

S = f (L-  bR) d4x (146) 

where L is the density (140) or (143); b is a constant and R the total 
curvature. The Riemann-Christoffel curvature tensor: 

- ~' " ~ P J" P (147) - R  ~ - a~F ~ - O,F ~ + rooF ~a - FpxF ~ 

gives immediately, in virtue of (138), (142): 

R = ~bx~,~b,~,~ = - 6 q b q b  (148) 

Hence, the action integral has the expression: 

S =  f {1[~3% 0.~b-(0~tp) 'y~tp-�89 (149) 

The variation with respect to ~ gives the equation (144) again and 
variating with respect to qb,  one gets: 

1 - 
a;. = 2-~ q,~.~5~0 (15o) 

and the equation (144) takes the form: 

1 
~, a~0 -4--~ ( ~ s q , )  ~ , ~ 0  = 0 (151) 

We recognize the equation (136) with A = - 1 / 4 8 b ,  which is equivalent 
to (134), i.e., equivalent to our equation (107) without external field and 
with the particular expression (133) for At(p2). In consequence of (21), 
(22), (148), and (150), we have: 

1 5 R = -~-~ (q~7,y,~0)(q77,y,~0) = (1"~2+ f~ )  (152) 

In conclusion, we see that the nonlinear term we have introduced in 
the equation (107) on the basis of  the chiral gauge invariance may be 
interpreted as the effect of  a torsion of the space due to a self action of  the 
monopole on itself. In such an interpretation, our fundamental chiral 
invariant l ~ + f ~  is nothing but the total curvature of the twisted space 
(apart from a constant factor). 
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12. SOME CONCLUSIONS AND EXPERIMENTAL 
SUGGESTIONS 

We have already noticed the obvious fact that the equations (19) and 
(31) of our monopole admit, as a particular case, the neutrino equations. 
But this particular case may be considered in two different ways. The first 
one is trivial: one can say that the equations of the monopole reduce to the 
one of a neutrino in the absence of electromagnetic field, which is not very 
interesting. The second way is a little adventurous and would require more 
careful thought but it seems to be worthy of note even at the present stage. 
We know, from the Dirar relation (66), that the magnetic charge g which 
appears in (19) and (31) is quantized. It is a multiple of elementary charge 

go: 

hc 
g = ngo, g o -  (153) 

2e 

where e is the charge of the electron. 
Therefore, our equations actually describe a family of monopoles, each 

of which corresponding to a value of n. But we suggest the hypothesis that 
they are in fact a kind of excited states of  only one particle, the neutrino, so 
that the latter will correspond to a kind of ground state n = 0. One can ask: 
how could magnetism be created from nothing but an excitation? We have 
no conclusive answer to this question, but here is an argument. We may 
observe indeed that contrary to the electric charge which is always conserved 
in the quantum equations (in virtue of the phase invariance), this is not the 
case for the magnetic charge. We have seen that the chiral gauge invariance 
(14) which entails the conservation of the magnetic current (20) is only true 
in the massless Dirac equation. If we consider the Dirac equation of the 
electron with a mass too: 

( e ) . moc .  
~,. O . - i ~ c A  ~ ~v---~--tp=O (154) 

we will not find a conservation law for the axial vector X. (22), but the 
Uhlenbeck and Laporte relation (Takabayasi, 1957): 

moc 
a,,x,~ +2 T a~ = o (155) 

where ~2 is the Dirac pseudo-invariant (22). And if we rewrite (154) in the 
spinorial form: 

(~r0 + *r �9 s)~:+ mock? = 0 
(156) 

( ~ro-~ " s)~ + moc~ = O 
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e 
~o = -  ih + e  , a x = - i h V + - A  (157) 

r c 

the Uhlenbeck and Laporte relation splits into the following two new 
relations, in terms of chiral currents: 

moc 
_1 L ( C r  v(r  = T a2 
cot 

(158) 
1 

~t (n§ v(n§ = 
moc 

c ---~-- a2, a2 = i ( C ~  - ,§ 

These relations, by a substraction, give (155) again. As far as we have 
interpreted the axial and the chiral currents as magnetic currents, the 
relations (155) and (158) mean that there are sources of  magnetism in the 
Dirac equation while, on the contrary, there are not any sources of electricity, 
because the electric current is always conservative. Therefore, it seems 
conceivable to consider a possible creation of magnetic poles in some 
particle reactions. 

Then, if we admit the hypothesis that our monopoles are magnetically 
-excited states of a neutrino, it is natural to imagine that they take part not 
only in electromagnetic, but also in weak interactions. Therefore, a new 
question arises: is it possible that some weak reactions produce such 
monopoles instead of  neutrinos? Of course if it is so, there must be at least 
two classes o f  monopoles, corresponding to the excited states of  ue and 
of  %. 

In the present paper we will not try to go further into these problems. 
Nevertheless, we may still add a remark. 

Let us suppose, for example, that in the sun, a certain part of the fusion 
reactions: 

p+p--> D +  e§ ue (159) 

produces monopoles, instead of neutrinos. Then, two possible consequences 
follow immediately: (a) Such processes could play a role in the magnetical 
aspects of  the solar activity, in particular in the sunspots, in which could 
emerge strong monopole flows generated in the depths of  the sun. (b) It 
seems natural to admit that these monopoles undergo an important energy 
loss in passing through matterfl Thus, contrary to the neutrinos, they either 
cannot reach the earth or if they make their way down to us, they probably 
have a very low energy, which could be under the reaction threshold of  the 

2Unfortunately even this simple assertion is only a conjecture because all the works devoted 
to such an energy loss are always concerned with heavy and slow monopoles, so that our 

case (massless monopoles) still remains unexplored. 
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devices  c o n s t r u c t e d  for  the  m e a s u r e m e n t  o f  the  so la r  n e u t r i n o  flow. But  it 
is a w e l l - k n o w n  fact  tha t  there  is a still u n e x p l a i n e d  lack  o f  reg is te red  so la r  

n e u t r i n o s  in  c o m p a r i s o n  wi th  the  e s t i m a t i o n  o f  the  flow emi t t ed  by  the  sun.  
A poss ib l e  e x p l a n a t i o n  o f  this  l ack  is tha t  o n l y  the  " g r o u n d  s ta te"  n e u t r i n o s  
p r o d u c e d  by  the  r e a c t i o n  (159) were obse rved  un t i l  now,  a n d  no t  the i r  

exc i ted  s tates:  the  mass less  m o n o p o l e s .  
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